Detection of Nucleic Acids of the Fish Pathogen Yersinia ruckeri from Planktonic and Biofilm Samples with a CRISPR/Cas13a-Based Assay

Author:

Calderón Iván L.1ORCID,Barros M. José1,Fernández-Navarro Nicolás1,Acuña Lillian G.1

Affiliation:

1. Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile

Abstract

Yersinia ruckeri is the cause of hemorrhagic septicemia, known as enteric redmouth disease, in salmonid fish species. This bacterial pathogen can form biofilms on abiotic surfaces of aquaculture settings or even on the surfaces of the fish themselves, contributing to their persistence in the aquatic environment. Detection methods for this and other fish pathogens can be time-consuming and lack specificity and sensitivity, limiting timely monitoring, the treatment of microbial infections, and effective control of their transmission in aquaculture settings. Rapid and sensitive detection methods for nucleic acids can be crucial for an appropriate surveillance of bacterial pathogens, and the CRISPR/Cas-based assays have emerged as a good alternative since it has been proven to be a useful tool for the rapid, specific, and sensitive detection of viruses and some bacteria. In this study, we explored the capability of the CRISPR/Cas13a system (SHERLOCK) to specifically detect both DNA and RNA (gene transcripts) from planktonic and biofilm samples of the bacterial fish pathogen Y. ruckeri. The assay was designed to detect the gyrA gene and the small noncoding RNAs (sRNAs) MicA and RprA from planktonic cultures and biofilm samples prepared in marine broth. The specific crRNA designed for these gene targets included a 28 nt specific gene sequence, and a scaffold sequence necessary for Cas13-binding. For all the assays, the nucleic acids obtained from samples were previously subjected to isothermal amplification with the recombinase polymerase amplification (RPA) method and the subsequent T7 transcription of the RPA amplicons. Finally, the detection of nucleic acids of Y. ruckeri was by means of a reporter signal released by the Cas13a collateral RNA cleavage triggered upon target recognition, measured by fluorescence- or lateral-flow-based readouts. This CRISPR/Cas13a-based assay was able to specifically detect both DNA and sRNAs from the Y. ruckeri samples, and the sensitivity was comparable to that obtained with qPCR analysis, highlighting the potential applicability of this CRISPR/Cas13a-based assay for fish pathogen surveillance.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3