Affiliation:
1. National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
2. Paralax Life Sciences, Sofia Center, 47 Bacho Kiro Str., 1202 Sofia, Bulgaria
Abstract
Waste Water Treatment Plants (WWTP) aim to reduce contamination in effluent water; however, studies indicate antimicrobial resistance genes (ARGs) persist post-treatment, potentially leading to their spread from human populated areas into the environment. This study evaluated the impact of a large WWTP serving 125,000 people on the Iskar River in Bulgaria, by characterizing the spatial and short-term temporal dynamics in bacterial community dynamics and resistance profiles of the surface water. Pairs of samples were collected biweekly on four dates from two different locations, one about 800 m after the WWTP effluents and the other 10 km downstream. Taxonomic classification revealed the dominance of Pseudomonodota and Bacteriodota, notably the genera Flavobacterium, Aquirufa, Acidovorax, Polynucleobacter, and Limnohabitans. The taxonomic structure corresponded with both lentic and lotic freshwater habitats, with Flavobacterium exhibiting a significant decrease over the study period. Principal Coordinate Analysis revealed statistically significant differences in bacterial community composition between samples collected on different dates. Differential abundance analysis identified notable enrichment of Polynucleobacter and Limnohabitans. There were shifts within the enriched or depleted bacterial taxa between early and late sampling dates. High relative abundance of the genes erm(B), erm(F), mph(E), msr(E) (macrolides); tet(C), tet(O), tet(W), tet(Q) and tet(X) (tetracyclines); sul1 and sul2 (sulphonamides); and cfxA3, cfxA6 (beta-lactams) were detected, with trends of increased presence in the latest sampling dates and in the location closer to the WWTP. Of note, genes conferring resistance to carbapenems blaOXA-58 and blaIMP-33-like were identified. Co-occurrence analysis of ARGs and mobile genetic elements on putative plasmids showed few instances, and the estimated human health risk score (0.19) according to MetaCompare2.0 was low. In total, 29 metagenome-assembled genomes were recovered, with only a few harbouring ARGs. This study enhances our understanding of freshwater microbial community dynamics and antibiotic resistance profiles, highlighting the need for continued ARGs monitoring.
Reference84 articles.
1. de Kraker, M.E.A., Stewardson, A.J., and Harbarth, S. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050?. PLoS Med., 13.
2. (2023, December 05). No Time to Wait: Securing the Future from Drug-Resistant Infections. Available online: https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections.
3. (2023, December 04). Drug-Resistant Infections: A Threat to Our Economic Future (Volume 2): Final Report. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/323311493396993758/final-re-.
4. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis;Murray;Lancet,2022
5. Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens;Microb. Transm.,2019