Impact of Intercropping Five Medicinal Plants on Soil Nutrients, Enzyme Activity, and Microbial Community Structure in Camellia oleifera Plantations

Author:

Bajiu Azuo12,Gao Kai1,Zeng Guangyu1,He Yuanhao2

Affiliation:

1. Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Nanning 530002, China

2. Key Laboratory of National Forestry and Grassland Administration on Control of Artifcial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

Intercropping medicinal plants plays an important role in agroforestry that can improve the physical, chemical, and biological fertility of soil. However, the influence of intercropping medicinal plants on the Camellia oleifera soil properties and bacterial communities remains elusive. In this study, five intercropping treatment groups were set as follows: Curcuma zedoaria/C. oleifera (EZ), Curcuma longa/C. oleifera (JH), Clinacanthus nutans/C. oleifera (YDC), Fructus Galangae/C. oleifera (HDK), and Ficus simplicissima/C. oleifera (WZMT). The soil chemical properties, enzyme activities, and bacterial communities were measured and analyzed to evaluate the effects of different intercropping systems. The results indicated that, compared to the C. oleifera monoculture group, YDC and EZ showed noticeable impacts on the soil chemical properties with a significant increase in total nitrogen (TN), nitrate nitrogen (NN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). Among them, the content of TN and AK in the rhizosphere soil of Camellia oleifera in the YDC intercropping system was the highest, which was 7.82 g/kg and 21.94 mg/kg higher than CK. Similarly, in the EZ intercropping system, the content of NN and OM in the rhizosphere soil of Camellia oleifera was the highest, which was higher than that of CK at 722.33 mg/kg and 2.36 g/kg, respectively. Curcuma longa/C. oleifera (JH) and Clinacanthus nutans/C. oleifera (YDC) had the most effect on soil enzyme activities. Furthermore, YDC extensively increased the activities of hydrogen peroxide and acid phosphatase enzymes; the increase was 2.27 mg/g and 3.21 mg/g, respectively. While JH obviously increased the urease activity, the diversity of bacterial populations in the rhizosphere soil of the intercropping plants decreased, especially the Shannon index of YDC and HDK. Compared with the monoculture group, the bacterial community abundance and structure of JH and YDC were quite different. The relative abundance of Actinobacteriota and Firmicutes was increased in YDC, and that of Acidobacteriota and Myxococcota was increased in JH. According to the redundancy analysis (RDA), pH, total potassium, and soil catalase activity were identified as the main factors influencing the microbial community structure of the intercropping systems. In conclusion, intercropping with JH and YDC increased the relative abundance of the dominant bacterial communities, improved the microbial community structure, and enhanced the soil nutrients and enzyme activities. Therefore, in the future, these two medicinal plants can be used for intercropping with C. oleifera.

Funder

Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization

Guangxi Forestry Science and Technology Promotion Demonstration Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3