Exploring the Role of a Putative Secondary Metabolite Biosynthesis Pathway in Mycobacterium abscessus Pathogenesis Using a Xenopus laevis Tadpole Model

Author:

Miller Nicholas James1ORCID,Dimitrakopoulou Dionysia1,Baglia Laurel A.1,Pavelka Martin S.1,Robert Jacques1ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA

Abstract

Mycobacterium abscessus (Mab) is an emerging human pathogen that has a high rate of incidence in immunocompromised individuals. We have found a putative secondary metabolite pathway within Mab, which may be a key factor in its pathogenesis. This novel pathway is encoded in a gene cluster spanning MAB_0284c to 0305 and is related to Streptomyces pathways, producing the secondary metabolites streptonigrin and nybomycin. We constructed an in-frame deletion of the MAB_0295 (phzC) gene and tested it in our Xenopus laevis animal model. We have previously shown that X. laevis tadpoles, which have functional lungs and T cells, can serve as a reliable comparative model for persistent Mab infection and pathogenesis. Here, we report that tadpoles intraperitoneally infected with the ∆phzC mutant exhibit early decreased bacterial loads and significantly increased survival compared with those infected with WT Mab. ∆phzC mutant Mab also induced lower transcript levels of several pro-inflammatory cytokines (IL-1β, TNF-α, iNOS, IFN-γ) than those of WT Mab in the liver and lungs. In addition, there was impaired macrophage recruitment and decreased macrophage infection in tadpoles infected with the ∆phzC mutant, by tail wound inoculation, compared to those infected with the WT bacteria, as assayed by intravital confocal microscopy. These data underline the relevance and usefulness of X. laevis tadpoles as a novel comparative animal model to identify genetic determinants of Mab immunopathogenesis, suggesting a role for this novel and uncharacterized pathway in Mab pathogenesis and macrophage recruitment.

Funder

National Institute of Allergy and Infectious Diseases at the National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3