Repositioning of the Antihyperlipidemic Drug Fenofibrate for the Management of Aeromonas Infections

Author:

Guerra Roberto M.1ORCID,Figueras Maria José1,Pujol-Bajador Isabel12,Fernández-Bravo Ana1ORCID

Affiliation:

1. Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, Institut d’Investigació Sanitària Pere Virgili (IISPV), University Rovira i Virgili, 43201 Reus, Spain

2. Microbiology Laboratory, University Hospital Sant Joan de Reus, Salut Sant Joan de Reus-Baix Camp, 43204 Reus, Spain

Abstract

Fenofibrate is a fibric acid derivative used as an antihyperlipidemic drug in humans. Its active metabolite, fenofibric acid, acts as an agonist to the peroxisome proliferator-activated receptor alpha (PPAR-α), a transcription factor involved in different metabolic pathways. Some studies have reported the potential protective role of this drug in cell lines and in vivo models against bacterial and viral infections. The aim of this study was to assess the in vitro effect of fenofibrate in the macrophage cell line J744A.1 against infections produced by Aeromonas, a pathogen for humans whose resistance to antibiotics has increased in recent decades. Macrophages were infected at MOI 10 with four strains of Aeromonas caviae and Aeromonas hydrophila isolated from human clinical samples and subsequently treated with fenofibrate. It was observed that fenofibrate-treated macrophages showed lower levels of cytotoxicity and intracellular bacteria compared to non-treated macrophages. In addition, the viability of treated macrophages was dependent on the dose of fenofibrate used. Furthermore, transcriptional analysis by RT-qPCR revealed significant differences in the expression of the PPAR-α gene and immune-related genes TNF-α, CCL3, and BAX in fenofibrate-treated macrophages compared to the macrophages without treatment. This study provides evidence that fenofibrate offered some protection in vitro in macrophages against Aeromonas infection. However, further studies are needed with other bacteria to determine its potential antibacterial effect and the route by which this protection is achieved.

Funder

MINECO

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3