A Novel View on the Taxonomy of Sulfate-Reducing Bacterium ‘Desulfotomaculum salinum’ and a Description of a New Species Desulfofundulus salinus sp. nov.

Author:

Nazina Tamara N.1ORCID,Tourova Tatyana P.1ORCID,Grouzdev Denis S.2ORCID,Bidzhieva Salimat K.1ORCID,Poltaraus Andrey B.3

Affiliation:

1. Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia

2. SciBear OU, Tartu mnt 67/1-13b, 10115 Tallinn, Estonia

3. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract

Two thermophilic spore-forming sulfate-reducing strains, 435T and 781, were isolated from oil and gas reservoirs in Western Siberia (Russia) about 50 years ago. Both strains were found to be neutrophilic, chemoorganotrophic, anaerobic bacteria, growing at 45–70 °C (optimum, 55–60 °C) and with 0–4.5% (w/v) NaCl (optimum, 0.5–1% NaCl). The major fatty acids were iso-C15:0, iso-C17:0, C16:0, and C18:0. In sulfate-reducing conditions, the strains utilized H2/CO2, formate, lactate, pyruvate, malate, fumarate, succinate, methanol, ethanol, propanol, butanol, butyrate, valerate, and palmitate. In 2005, based on phenotypic characteristics and a 16S rRNA gene sequence analysis, the strains were described as ‘Desulfotomaculum salinum’ sp. nov. However, this species was not validly published because the type strain was not deposited in two culture collections. In this study, a genomic analysis of strain 435T was carried out to determine its taxonomic affiliation. The genome size of strain 435T was 2.886 Mb with a 55.1% genomic G + C content. The average nucleotide identity and digital DNA–DNA hybridization values were highest between strain 435T and members of the genus Desulfofundulus, 78.7–93.3% and 25.0–52.2%, respectively; these values were below the species delineation cut-offs (<95–96% and <70%). The cumulative phenotypic and phylogenetic data indicate that two strains represent a novel species within the genus Desulfofundulus, for which the name Desulfofundulus salinus sp. nov. is proposed. The type strain is 435T (=VKM B-1492T = DSM 23196T). A genome analysis of strain 435T revealed the genes for dissimilatory sulfate reduction, autotrophic carbon fixation via the Wood–Ljungdahl pathway, hydrogen utilization, methanol and organic acids metabolism, and sporulation, which were confirmed by cultivation studies.

Funder

Russian Science Foundation

Publisher

MDPI AG

Reference75 articles.

1. Classification of the spore-forming sulfate-reducing bacteria;Campbell;Bacteriol. Rev.,1965

2. Phylogenetic analysis of the genus Desulfotomaculum: Evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov;Stackebrandt;Int. J. Syst. Bacteriol.,1997

3. Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov;Watanabe;Int. J. Syst. Evol. Microbiol.,2018

4. Thermophilic sulfate-reducing bacteria from oil strata;Nazina;Mikrobiologiya,1978

5. Submicroscopic organization and sporulation in Desulfotomaculum nigrificans;Nazina;Microbiology,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3