Affiliation:
1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
2. School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
Abstract
Arthrobotrys oligospora, a widespread nematode-trapping fungus which can produce conidia for asexual reproduction and form trapping devices (traps) to catch nematodes. However, little is known about the sporulation mechanism of A. oligospora. This research characterized the functions and regulatory roles of the upstream spore-producing regulatory genes, AosfgA and AofluG, in A. oligospora. Our analysis showed that AosfgA and AofluG interacted with each other. Meanwhile, the AofluG gene was downregulated in the ΔAosfgA mutant strain, indicating that AosfgA positively regulates AofluG. Loss of the AosfgA and AofluG genes led to shorter hyphae and more septa, and the ΔAosfgA strain responded to heat and chemical stresses. Surprisingly, the number of nuclei was increased in the mycelia but reduced in the conidia of the ΔAosfgA and ΔAofluG mutants. In addition, after nematode induction, the number and volume of vacuoles were remarkably increased in the ΔAosfgA and ΔAofluG mutant strains. The abundance of metabolites was markedly decreased in the ΔAosfgA and ΔAofluG mutant strains. Collectively, the AosfgA and AofluG genes play critical roles in mycelial development, and they are also involved in vacuole assembly, the stress response, and secondary metabolism. Our study provides distinct insights into the regulatory mechanism of sporulation in nematode-trapping fungi.
Funder
National Natural Science Foundation of China
Yunling Scholar of Yunnan Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献