Comparative Analysis of Bacterial Information of Biofilms and Activated Sludge in Full-Scale MBBR-IFAS Systems

Author:

Zhou Xiaolin1ORCID,Liu Haicheng1,Fan Xing1,Wang Xuyi1,Bi Xuejun1,Cheng Lihua1,Huang Shujuan1,Zhao Fangchao1,Yang Tang1

Affiliation:

1. State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, China

Abstract

This study extensively analyzed the bacterial information of biofilms and activated sludge in oxic reactors of full-scale moving bed biofilm reactor-integrated fixed-film activated sludge (MBBR-IFAS) systems. The bacterial communities of biofilms and activated sludge differed statistically (R = 0.624, p < 0.01). The denitrifying genera Ignavibacterium, Phaeodactylibacter, Terrimonas, and Arcobacter were more abundant in activated sludge (p < 0.05), while comammox Nitrospira was more abundant in biofilms (p < 0.05), with an average relative abundance of 8.13%. Nitrospira and Nitrosomonas had weak co-occurrence relationships with other genera in the MBBR-IFAS systems. Potential function analysis revealed no differences in pathways at levels 1 and 2 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) between biofilms and activated sludge. However, in terms of pathways at level 3, biofilms had more potential in 26 pathways, including various organic biodegradation and membrane and signal transportation pathways. In comparison, activated sludge had more potential in only five pathways, including glycan biosynthesis and metabolism. With respect to nitrogen metabolism, biofilms had greater potential for nitrification (ammonia oxidation) (M00528), and complete nitrification (comammox) (M00804) concretely accounted for methane/ammonia monooxygenase (K10944, K10945, and K10946) and hydroxylamine dehydrogenase (K10535). This study provides a theoretical basis for MBBR-IFAS systems from the perspective of microorganisms.

Funder

Shandong Excellent Youth Science Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3