Antibacterial and Antibiofilm Properties of Native Australian Plant Endophytes against Wound-Infecting Bacteria

Author:

Firoozbahr Meysam1,Palombo Enzo A.12ORCID,Kingshott Peter13,Zaferanloo Bita1ORCID

Affiliation:

1. Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

2. ARC Training Center for Biofilm Research and Innovation, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

3. ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

Abstract

The wound management field faces significant challenges due to antimicrobial resistance (AMR) and the complexity of chronic wound care. Effective wound treatment requires antimicrobial dressings to prevent bacterial infections. However, the rise of AMR necessitates new antimicrobial agents for wound dressings, particularly for addressing bacterial pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Endophytic fungi, known for producing diverse bioactive compounds, represent a promising source of such new agents. This study tested thirty-two endophytic fungi from thirteen distinct Australian native plants for their antibacterial activity against S. aureus. Ethyl acetate (EtOAc) extracts from fungal culture filtrates exhibited inhibitory effects against both methicillin-sensitive S. aureus ATCC 25923 (MIC = 78.1 µg/mL) and MRSA M180920 (MIC = 78.1 µg/mL). DNA sequence analysis was employed for fungal identification. The most active sample, EL 19 (Chaetomium globosum), was selected for further analysis, revealing that its EtOAc extracts reduced S. aureus ATCC 25923 biofilm formation by 55% and cell viability by 57% to 68% at 12 × MIC. Furthermore, cytotoxicity studies using the brine shrimp lethality test demonstrated low cytotoxicity up to 6 × MIC (25% mortality rate) with an LC50 value of 639.1 µg/mL. Finally, the most active sample was incorporated into polycaprolactone (PCL) fiber mats via electrospinning, with resultant inhibition of S. aureus species. This research underscores the potential of endophytic fungi from Australian plants as sources of substances effective against common wound pathogens. Further exploration of the responsible compounds and their mechanisms could facilitate the development of wound dressings effective against MRSA and innovative biofilm-resistant electrospun fibers, contributing to the global efforts to combat AMR.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3