Association between Soil Physicochemical Properties and Bacterial Community Structure in Diverse Forest Ecosystems

Author:

Yang Bing1ORCID,Feng Wanju1,Zhou Wenjia1,He Ke2,Yang Zhisong1

Affiliation:

1. Sichuan Academy of Giant Panda, Chengdu 610041, China

2. Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637002, China

Abstract

Although the importance of the soil bacterial community for ecosystem functions has long been recognized, there is still a limited understanding of the associations between its community composition, structure, co-occurrence patterns, and soil physicochemical properties. The objectives of the present study were to explore the association between soil physicochemical properties and the composition, diversity, co-occurrence network topological features, and assembly mechanisms of the soil bacterial community. Four typical forest types from Liziping Nature Reserve, representing evergreen coniferous forest, deciduous coniferous forest, mixed conifer-broadleaf forest, and its secondary forest, were selected for this study. The soil bacterial community was analyzed using Illumina MiSeq sequencing of 16S rRNA genes. Nonmetric multidimensional scaling was used to illustrate the clustering of different samples based on Bray–Curtis distances. The associations between soil physicochemical properties and bacterial community structure were analyzed using the Mantel test. The interactions among bacterial taxa were visualized with a co-occurrence network, and the community assembly processes were quantified using the Beta Nearest Taxon Index (Beta-NTI). The dominant bacterial phyla across all forest soils were Proteobacteria (45.17%), Acidobacteria (21.73%), Actinobacteria (8.75%), and Chloroflexi (5.06%). Chao1 estimator of richness, observed ASVs, faith-phylogenetic diversity (faith-PD) index, and community composition were distinguishing features of the examined four forest types. The first two principal components of redundancy analysis explained 41.33% of the variation in the soil bacterial community, with total soil organic carbon, soil moisture, pH, total nitrogen, carbon/nitrogen (C/N), carbon/phosphorous (C/P), and nitrogen/phosphorous (N/P) being the main soil physicochemical properties shaping soil bacterial communities. The co-occurrence network structure in the mixed forest was more complex compared to that in pure forests. The Beta-NTI indicated that the bacterial community assembly of the four examined forest types was collaboratively influenced by deterministic and stochastic ecological processes.

Funder

Sichuan Science and Technology Program

Innovation Team Program of Sichuan Forestry and Grassland Bureau

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3