Lipid Droplets: Formation, Degradation, and Their Role in Cellular Responses to Flavivirus Infections

Author:

Hsia James Z.1,Liu Dongxiao1,Haynes LaPrecious1,Cruz-Cosme Ruth1,Tang Qiyi1ORCID

Affiliation:

1. Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA

Abstract

Lipid droplets (LDs) are cellular organelles derived from the endoplasmic reticulum (ER), serving as lipid storage sites crucial for maintaining cellular lipid homeostasis. Recent attention has been drawn to their roles in viral replication and their interactions with viruses. However, the precise biological functions of LDs in viral replication and pathogenesis remain incompletely understood. To elucidate the interaction between LDs and viruses, it is imperative to comprehend the biogenesis of LDs and their dynamic interactions with other organelles. In this review, we explore the intricate pathways involved in LD biogenies within the cytoplasm, encompassing the uptake of fatty acid from nutrients facilitated by CD36-mediated membranous protein (FABP/FATP)-FA complexes, and FA synthesis via glycolysis in the cytoplasm and the TCL cycle in mitochondria. While LD biogenesis primarily occurs in the ER, matured LDs are intricately linked to multiple organelles. Viral infections can lead to diverse consequences in terms of LD status within cells post-infection, potentially involving the breakdown of LDs through the activation of lipophagy. However, the exact mechanisms underlying LD destruction or accumulation by viruses remain elusive. The significance of LDs in viral replication renders them effective targets for developing broad-spectrum antivirals. Moreover, considering that reducing neutral lipids in LDs is a strategy for anti-obesity treatment, LD depletion may not pose harm to cells. This presents LDs as promising antiviral targets for developing therapeutics that are minimally or non-toxic to the host.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3