Development and Evaluation of Bioconverted Milk with Anti-Microbial Effect against Periodontal Pathogens and α-Glucosidase Inhibitory Activity

Author:

Lee Yewon1,Yoon Yohan12ORCID,Choi Kyoung-Hee3

Affiliation:

1. Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea

2. Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea

3. Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea

Abstract

To decrease periodontal pathogens and increase the number of beneficial bacteria, probiotics and bioactive compounds made via microbial bioconversion are recently used. In addition, the interest regarding probiotics-mediated bioconversion with popular medicinal plants is increasing. Artemisia herba-alba, a type of wormwood, has recently been attention as a medicinal plant due to its various bioactive compounds. Therefore, we developed bioconverted milk containing A. herba-alba that effectively inhibited periodontal pathogens and α-glucosidase. To select the appropriate lactic acid bacteria for the probiotic candidate strain, 74 strains of lactic acid bacteria were screened. Among them, Lactiplantibacillus plantarum SMFM2016-RK was chosen as the probiotic due to its beneficial characteristics such as high acid and bile tolerance, antioxidant activity, and α-glucosidase inhibition. Based on the minimal bactericidal concentration against three periodontal pathogens, the following appropriate concentrations of Artemisia herba-alba extract were added to milk: 5 mg/mL of A. herba-alba ethanol extract and 25 mg/mL of A. herba-alba hot-water extract. Four bioconverted milks (BM), BM1, BM2, BM3, and BM4, were produced by combining L. plantarum SMFM2016-RK alone, L. plantarum SMFM2016-RK and ethanol extract, L. plantarum SMFM2016-RK and hot-water extract, and L. plantarum SMFM2016-RK with both extracts. As a result of antimicrobial activity, BM3 inhibited the growth of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis the most, and BM4 suppressed the growth of Fusobacterium nucleatum the most. In addition, bioconverted milk containing A. herba-alba (BM2, BM3, and BM4) inhibited α-glucosidase more effectively than BM1. The whole genome of L. plantarum SMFM2016-RK was obtained, and 3135 CDS, 67 tRNA, and 16 RNA were predicted. The genome annotation of L. plantarum SMFM2016-RK revealed 11 CDS related to proteolysis and amino acid metabolism and 2 CDS of phenolic acid-metabolizing enzymes. In conclusion, A. herba-alba-added milk bioconverted by L. plantarum SMFM2016-RK displayed both the growth inhibitory effect on periodontal pathogens and the α-glucosidase inhibitory activity; thus, it necessitates to evaluate the effects on the alleviation of periodontal diseases and glycemic control through future animal experiments.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3