In Vitro Antimicrobial Synergistic Activity and the Mechanism of the Combination of Naringenin and Amikacin Against Antibiotic-Resistant Escherichia coli

Author:

Yi Lankun1234,Cao Mingze1,Chen Xu1234,Bai Yubin234,Wang Weiwei234,Wei Xiaojuan234,Shi Yuxiang1,Zhang Yongying1,Ma Tenghe1,Zhu Zhen1,Zhang Jiyu234

Affiliation:

1. College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan 056038, China

2. Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Lanzhou 730050, China

3. Key Laboratory of Veterinary Pharmaceutical Development, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China

4. Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China

Abstract

Bacterial drug resistance is becoming an increasingly serious problem, and the development of antibacterial synergists is urgently needed. Combining existing antibiotics with promising nonantibiotic agents is one strategy that has been shown to be effective at overcoming the widespread emergence of antibiotic-resistant pathogens. In this study, we investigated the antibacterial activities and mechanism of naringenin (NG) combined with amikacin (AMK) against multidrug-resistant Escherichia coli (E. coli). We first measured the fractional inhibitory concentration (FIC) of NG combined with antibiotics via the checkerboard method. The results indicated that the combination of NG and AMK had a synergistic effect on E. coli ATCC 25922 and E. coli C7F3. In addition, this synergistic effect was verified by time-kill assays. Moreover, scanning electron microscopy (SEM) was used to observe cell morphology. The results showed that the cell wall of E. coli was destroyed. Furthermore, we assessed the leakage of alkaline phosphatase (AKP), K+, and protein. The extracellular AKP activity increased after the combinational group of 1/2MIC NG and 1/2MIC AMK, suggesting an impairment in cell wall permeability. An increase in the leakage of intracellular K+ and protein indicated an increase in cell inner membrane permeability. These results revealed that NG and AMK inhibited E. coli by damaging cell walls and membranes. In addition, PI uptake rapidly increased after treatment with NG and AMK. Confocal laser scanning microscopy (CLSM) revealed that NG caused cell wall and cell membrane damage in E. coli. In summary, our results provide a new strategy for responding to the development of E. coli drug resistance.

Funder

National Natural Science Foundation of China

National Beef Cattle and Yak Industry Technology System

Central Public-interest Scientific Institution Basal Research Fund

Natural Science Foundation of Hebei Province

Chinese Academy of Agricultural Sciences Innovation Project

Key Research and Development Projects of Hebei

Earmarked fund for Hebei Agriculture Research System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3