Selection and Genetic Analysis of High Polysaccharide-Producing Mutants in Inonotus obliquus

Author:

Hua Lanlan12,Shi Hongling12,Lin Qing12,Wang Haozhong13,Gao Yan12,Zeng Jun12,Lou Kai12,Huo Xiangdong12

Affiliation:

1. Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

2. Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China

3. College of Life Science and Technology, Xinjiang University, Urumqi 830046, China

Abstract

Inonotus obliquus, a medicinal fungus, has garnered significant attention in scientific research and medical applications. In this study, protoplasts of the I. obliquus HS819 strain were prepared using an enzymatic method and achieved a regeneration rate of 5.83%. To enhance polysaccharide production of I. obliquus HS819, atmospheric and room temperature plasma (ARTP) technology was employed for mutagenesis of the protoplasts. Through liquid fermentation, 32 mutant strains exhibiting diverse characteristics in morphology, color of the fermentation broth, mycelial pellet size, and biomass were screened. Secondary screening identified mutant strain A27, which showed a significant increase in polysaccharide production up to 1.67 g/L and a mycelial dry weight of 17.6 g/L, representing 137.67% and 15% increases compared to the HS819 strain, respectively. Furthermore, the fermentation period was reduced by 2 days, and subsequent subculture cultivation demonstrated stable polysaccharide production and mycelial dry weight. The genome resequencing analysis of the HS819 strain and mutant strain A27 revealed 3790 InDel sites and mutations affecting 612 functional genes associated with polysaccharide synthesis. We predict that our findings will be helpful for high polysaccharide production through genetic engineering of I. obliquus.

Funder

Construction Plan of Science and Technology Innovation Base of Xinjiang Uygur Autonomous Region

Project of Fund for Stable Support to Agricultural Sci-Tech Renovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3