Climate Change Stressors, Phosphate Limitation, and High Irradiation Interact to Increase Alexandrium minutum Toxicity and Modulate Encystment Rates

Author:

Sixto Marta12,Riobó Pilar3ORCID,Rodríguez Francisco1ORCID,Díaz Patricio A.4ORCID,Figueroa Rosa I.1ORCID

Affiliation:

1. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50-52, 36390 Vigo, Spain

2. Campus do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, 36311 Vigo, Spain

3. Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain

4. Centro i~mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile

Abstract

The changes in the cell physiology (growth rate, cell size, and cell DNA content), photosynthetic efficiency, toxicity, and sexuality under variable light and nutrient (phosphates) conditions were evaluated in cultures of the dinoflagellate Alexandrium minutum obtained from a red tide in the Ría de Vigo (NW Spain). The cells were grown at low (40 and 150 µE m−2 s−1), moderate (400 µE m−2 s−1), and high (800 µE m−2 s−1) light intensities in a medium with phosphate (P+) and without (P−). Cultures were acclimated to the irradiance conditions for one week, and the experiment was run for ~1 month. The cell size and DNA content were monitored via flow cytometry. Two different clonal strains were employed as a monoculture (in a P− or P+ medium) or, to foster sexuality and resting cyst formation, as a mixed culture (only in a P− medium). A. minutum growth was favored by increasing light intensities until 400 µE m−2 s−1. The DNA content analyses indicated the accumulation of S-phase cells at the highest light intensities (400 and 800 µE m−2 s−1) and therefore the negative effects on cell cycle progression. Only when the cells were grown in a P− medium did higher light intensities trigger dose-dependent, significantly higher toxicities in all the A. minutum cultures. This result suggests that the toxicity level is responsive to the combined effects of (high) light and (low) P stress. The cell size was not significantly affected by the light intensity or P conditions. The optimal light intensity for resting cyst formation was 150 µE m−2 s−1, with higher irradiances reducing the total encystment yield. Encystment was not observed at the lowest light intensity tested, indicative of the key role of low-level irradiance in gamete and/or zygote formation, in contrast to the stressor effect of excessive irradiance on planozygote formation and/or encystment.

Funder

Spanish project BIOTOX

EU-INTERREG Atlantic Area project PRIMROSE

Galician Networks of Excellence from the Innovation Agency

CCVIEO culture collection of microalgae

Spanish project DIANAS

ANID-FONDECYT

Centre for Biotechnology and Bioengineering

Publisher

MDPI AG

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3