Characterization of Bacterial Communities on Trout Skin and Eggs in Relation to Saprolegnia parasitica Infection Status

Author:

Pavić Dora1,Geček Sunčana2ORCID,Miljanović Anđela1,Grbin Dorotea13,Bielen Ana1ORCID

Affiliation:

1. Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

2. Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

3. Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia

Abstract

We have investigated the changes in the microbial communities on the surface of trout eggs and the skin of adult trout in relation to the presence of Saprolegnia parasitica. This pathogen causes saprolegniosis, a disease responsible for significant losses in salmonid farms and hatcheries. It is known from other disease systems that the host-associated microbiome plays a crucial role in the defence against pathogens, but if the pathogen predominates, this can lead to dysbiosis. However, analyses of the effects of S. parasitica on the diversity, composition, and function of microbial communities on fish skin and eggs are scarce. Thus, we have collected skin swabs from injured and healthy trout (N = 12), which differed in S. parasitica load, from three different fish farms in Croatia (Kostanjevac, Radovan, and Solin), while trout egg samples (N = 12) were infected with S. parasitica in the laboratory. Illumina sequencing of the V4 region of the 16S rRNA marker gene showed that infection with S. parasitica reduced the microbial diversity on the surface of the eggs, as evidenced by decreased Pielou’s evenness and Shannon’s indices. We further determined whether the bacterial genera with a relative abundance of >5.0% in the egg/skin samples were present at significantly different abundances in relation to the presence of S. parasitica. The results have shown that some genera, such as Pseudomonas and Flavobacterium, decreased significantly in the presence of the pathogen on the egg surface. On the other hand, some bacterial taxa, such as Acinetobacter and Janthinobacterium, as well as Aeromonas, were more abundant on the diseased eggs and the injured trout skin, respectively. Finally, beta diversity analyses (weighted UniFrac, unweighted UniFrac, Bray–Curtis) have shown that the sampling location (i.e., fish farm), along with S. parasitica infection status, also has a significant influence on the microbial communities’ composition on the trout skin and eggs, demonstrating the strong influence of the environment on the shaping of the host surface microbiome. Overall, we have shown that the presence of S. parasitica was associated with changes in the diversity and structure of the trout skin/egg microbiome. The results obtained could support the development of new strategies for the management of saprolegniosis in aquaculture.

Funder

Croatian Science Foundation: installation research project “Interactions of Freshwater Pathogenic Oomycetes and the Environment”

Young Researchers’ Career Development Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3