Application of Rice Straw Inhibits Clubroot Disease by Regulating the Microbial Community in Soil

Author:

Han Zhe12,Zhang Yiping3,Di Chengqian3ORCID,Bi Hongwen1,Pan Kai3

Affiliation:

1. Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

2. Heilongjiang Academy of Agricultural Sciences Postdoctoral Program, Harbin 150086, China

3. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

Abstract

Straw return is an effective agricultural management practice for alleviating soil sickness, but only a few studies have focused on the incorporation of straw with deep plowing and rotary tillage practices in vegetable production. To determine the effects of rice straw return on Chinese cabbage clubroot, a field experiment for three consecutive years in the same area was performed. Soil microbial high-throughput sequencing, quantitative real-time polymerase chain reaction (PCR) and other methods were used to detect Chinese cabbage plant growth, clubroot occurrence, soil chemical properties and soil microbial diversity and abundance. The results showed that straw addition could significantly reduce the clubroot disease incidence. Through Illumina Miseq sequencing, the diversity of the fungi decreased obviously. The relative abundance of the phyla Proteobacteria and Firmicutes was strikingly reduced, while that of Chloroflexi was significantly increased. Redundancy analysis suggests that soil properties may also affect the soil microbial composition; changes in the microbial structure of bacteria and fungi were associated with the available phosphorus. In conclusion, the continuous addition of rice straw can promote the growth and control the occurrence of clubroot, which is closely related to the microbial composition, and the inhibition effect is proportional to the age of addition.

Funder

Key Research and Development Program in Heilongjiang

Collaborative Innovation Extension System of Modern Agricultural (Vegetables) Industrial Technology in Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3