Variations and Interseasonal Changes in the Gut Microbial Communities of Seven Wild Fish Species in a Natural Lake with Limited Water Exchange during the Closed Fishing Season

Author:

Liang Yangyang1,Wang Zijia23,Gao Na1,Qi Xiaoxue2,Zeng Juntao23,Cui Kai1,Lu Wenxuan1,Bai Shijie2ORCID

Affiliation:

1. Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China

2. Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The gut microbiota of fish is crucial for their growth, development, nutrient uptake, physiological balance, and disease resistance. Yet our knowledge of these microbial communities in wild fish populations in their natural ecosystems is insufficient. This study systematically examined the gut microbial communities of seven wild fish species in Chaohu Lake, a fishing-restricted area with minimal water turnover, across four seasons. We found significant variations in gut microbial community structures among species. Additionally, we observed significant seasonal and regional variations in the gut microbial communities. The Chaohu Lake fish gut microbial communities were predominantly composed of the phyla Firmicutes, Proteobacteria(Gamma), Proteobacteria(Alpha), Actinobacteriota, and Cyanobacteria. At the genus level, Aeromonas, Cetobacterium, Clostridium sensu stricto 1, Romboutsia, and Pseudomonas emerged as the most prevalent. A co-occurrence network analysis revealed that C. auratus, C. carpio, and C. brachygnathus possessed more complex and robust gut microbial networks than H. molitrix, C. alburnus, C. ectenes taihuensis, and A. nobilis. Certain microbial groups, such as Clostridium sensu stricto 1, Romboutsia, and Pseudomonas, were both dominant and keystone in the fish gut microbial network. Our study offers a new approach for studying the wild fish gut microbiota in natural, controlled environments. It offers an in-depth understanding of gut microbial communities in wild fish living in stable, limited water exchange natural environments.

Funder

National Modern Agriculture Industry Technology System Special Project

Anhui Agriculture Research System

Key Research and Development Program of Anhui Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3