Application of a Novel Proteomic Microarray Reveals High Exposure to Diarrhoeagenic Escherichia coli among Children in Zambia Participating in a Phase I Clinical Trial

Author:

Mwape Kapambwe123,Mubanga Cynthia14ORCID,Chilyabanyama Obvious Nchimunya1ORCID,Chibesa Kennedy15ORCID,Chisenga Caroline Cleopatra1,Silwamba Suwilanji1,Randall Arlo6,Liang Xiaowu6,Barnard Tobias George2ORCID,Simuyandi Michelo1ORCID,Chilengi Roma1

Affiliation:

1. Enteric Disease and Vaccines Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia

2. Water and Health Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa

3. Department of Basic Medical Sciences, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola P.O. Box 71191, Zambia

4. Division of Medical Microbiology, Department of Pathology, Stellenbosch University & National Health Laboratory Service, Tygerberg Hospital Francie van Zijl Drive, P.O. Box 241, Cape Town 8000, South Africa

5. Next Generation Sequencing Unit and Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa

6. Antigen Discovery Inc., 1 Technology Dr., STE E309, Irvine, CA 92618, USA

Abstract

Diarrhoeagenic E. coli (DEC) significantly contributes to the burden of diarrhoea among children. Currently, there is no approved vaccine against DEC, but several vaccines against the enterotoxigenic E. coli (ETEC) pathotype are in advanced clinical trial stages, including the ETVAX® vaccine, undergoing evaluation in Zambia. This study reports on the reactivity of antibodies from ETVAX® vaccine and placebo recipients in a phase I clinical trial to proteins derived from (DEC) other than ETEC. Plasma samples collected at two time points (prior to any vaccination and post-third dose vaccination) from 16 vaccinated and 4 placebo participants in a phase 1 clinical trial examining the safety, tolerability, and immunogenicity of ETVAX® with dmLT adjuvant were evaluated for IgG response to E. coli antigens other than ETEC using the Pan-DEC protein microarray. This was the first field application of the novel pan-DEC array as a new tool in assessing the antigenic breadth of antibody responses induced by the ETVAX vaccine, as well as to assess early life exposure to DEC pathotypes and other bacterial enteric pathogens. We observed that plasma obtained from ETVAX® and placebo recipients had high antibody reactivity to Ipa, SseC and EspB proteins. These findings suggest that there is high exposure early in life to DEC pathogens, like EPEC, EHEC, EAEC and EIEC in addition to ETEC, in the Zambian population. These immunological observations are consistent with the results of recent epidemiological studies assessing the etiology of diarrheal disease among infants and young children in Zambia.

Funder

Centre for Infectious Disease Research in Zambia

Bill & Melinda Gates Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3