Antibacterial, Resistance Modulation, Anti-Biofilm Formation, and Efflux Pump Inhibition Properties of Loeseneriella africana (Willd.) N. Halle (Celastraceae) Stem Extract and Its Constituents

Author:

Anokwah Daniel1ORCID,Asante-Kwatia Evelyn2,Asante Jonathan1,Obeng-Mensah Daniel1,Danquah Cynthia Amaning3ORCID,Amponsah Isaac Kingsley2,Ameyaw Elvis Ofori1,Biney Robert Peter1,Obese Ernest1ORCID,Oberer Lukas4,Amoako Daniel Gyamfi5ORCID,Abia Akebe Luther King56ORCID,Mensah Abraham Yeboah2

Affiliation:

1. School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB, Cape Coast, Ghana

2. Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana

3. Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana

4. Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland

5. Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa

6. Environmental Research Foundation, Westville 3630, South Africa

Abstract

This study investigated the antibacterial, resistance modulation, biofilm inhibition, and efflux pump inhibition potentials of Loeseneriella africana stem extract and its constituents. The antimicrobial activity was investigated by the high-throughput spot culture growth inhibition (HT-SPOTi) and broth microdilution assays. The resistance modulation activity was investigated using the anti-biofilm formation and efflux pump inhibition assays. Purification of the extract was carried out by chromatographic methods, and the isolated compounds were characterized based on nuclear magnetic resonance, Fourier transform infrared and mass spectrometry spectral data and comparison with published literature. The whole extract, methanol, ethyl acetate, and pet-ether fractions of L. africana all showed antibacterial activity against the test bacteria with MICs ranging from 62.5 to 500.0 µg/mL The whole extract demonstrated resistance modulation effect through strong biofilm inhibition and efflux pump inhibition activities against S. aureus ATCC 25923, E. coli ATCC 25922 and P. aeruginosa ATCC 27853. Chromatographic fractionation of the ethyl acetate fraction resulted in the isolation of a triterpenoid (4S,4αS,6αR,6βS,8αS,12αS,12βR,14αS,14βR)-4,4α,6β,8α,11,11,12β,14α-Octamethyloctadecahydropicene-1,3(2H,4H)-dione) and a phytosterol (β-sitosterol). These compounds showed antibacterial activity against susceptible bacteria at a MIC range of 31–125 µg/mL and potentiated the antibacterial activity of amoxicillin (at ¼ MIC of compounds) against E. coli and P. aeruginosa with modulation factors of 32 and 10, respectively. These compounds also demonstrated good anti-biofilm formation effect at a concentration range of 3–100 µg/mL, and bacterial efflux pump inhibition activity at ½ MIC and ¼ MIC against E. coli and P. aeruginosa. Loeseneriella africana stem bark extracts and constituents elicit considerable antibacterial, resistance modulation, and biofilm and efflux pump inhibition activities. The results justify the indigenous uses of L. africana for managing microbial infections.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3