Genome-Wide Transcriptome Analysis of a Virulent sRNA, Trans217, in Xanthomonas oryzae pv. oryzae (Xoo), the Causative Agent of Rice Bacterial Blight

Author:

Hu Yiqun12,Zhang Jianjian3,Zhang Aifang12

Affiliation:

1. Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China

2. Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China

3. Department of science research University of Science and Technology of China, Hefei 230026, China

Abstract

Small non-coding RNAs (sRNAs) act as post-transcriptional regulators to participate in many cellular processes. Among these, sRNA trans217 has been identified as a key virulent factor associated with pathogenicity in rice, triggering hypersensitive reactions in non-host tobacco and facilitating the secretion of the PthXo1 effector in Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99A. Elucidating potential targets and downstream regulatory genes is crucial for understanding cellular networks governing pathogenicity and plant resistance. To explore the targets regulated by sRNA trans217, transcriptome sequencing was carried out to assess differential expression genes (DEGs) between the wild-type strain PXO99A and a mutant lacking the sRNA fragment under both virulence-inducing or normal growth conditions. DEG analysis revealed that sRNA trans217 was responsible for diverse functions, such as type III secretion system (T3SS), glutamate synthase activity, and oxidative stress response. Three genes were selected for further investigation due to their significant differential expression and biological relevance. Deletion of PXO_RS08490 attenuated the pathogenicity of Xoo in rice and reduced the tolerance level of PXO99A to hydrogen peroxide. These findings suggest a regulatory role of sRNA trans217 in modulating bacterial virulence through multiple gene targets, either directly or indirectly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3