Affiliation:
1. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
2. Institute of Geographical Sciences, Heibei Academy of Sciences, Shijiazhuang 050011, China
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in coastal ecosystems, especially in tidal flat wetlands. However, the mechanisms through which PAHs impact the soil bacterial communities of wetlands featuring a simple vegetation structure in the Yellow River Delta (China) remain largely unclear. In this study, we examined soil samples from two sites featuring a single vegetation type (Suaeda salsa) in the Yellow River Delta. Specifically, we investigated the impacts of PAHs on the diversity and composition of soil bacteria communities through high-throughput 16 S rRNA sequencing. PAHs significantly increased the soil organic carbon content but decreased the total phosphorus content (p = 0.02). PAH contamination notably reduced soil bacterial community α diversity (Shannon index) and β diversity. Furthermore, PAHs significantly altered the relative abundance of bacterial phyla, classes, and genera (p < 0.05). Specifically, PAHs increased the relative abundance of the bacterial phyla Acidobacteriota and Gemmatimonadota (p < 0.05), while decreasing the relative abundance of Bacteroidota, Desulfobacterota, and Firmicutes compared to the control wetland (p < 0.05). Moreover, PAHs and certain soil properties [total nitrogen (TN), soil organic carbon (SOC), total phosphorus (TP), and total salt (TS)] were identified as key parameters affecting the community of soil bacteria, with the abundance of specific bacteria being both negatively and positively affected by PAHs, SOC, and TN. In summary, our findings could facilitate the identification of existing environmental problems and offer insights for improving the protection and management of tidal flat wetland ecosystems in the Yellow River Delta of China.
Funder
Budget Surplus of Central Financial Science and Technology Plan
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献