Screening and Genomic Analysis of Alkaloid-Producing Endophytic Fungus Fusarium solani Strain MC503 from Macleaya cordata

Author:

Wu Xinhong1,Ibrahim Nazidi1,Liang Yili1,Liu Xueduan1

Affiliation:

1. Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

Abstract

The extensive harvesting of Macleaya cordata, as a biomedicinal plant and a wild source of quaternary benzo[c]phenanthridine alkaloids, has led to a rapid decline in its population. An alternative approach to the production of these bioactive compounds, which are known for their diverse pharmacological effects, is needed. Production of these compounds using alkaloid-producing endophytic fungi is a promising potential approach. In this research, we isolated an alkaloid-producing endophytic fungus, strain MC503, from the roots of Macleaya cordata. Genomic analysis was conducted to elucidate its metabolic pathways and identify the potential genes responsible for alkaloid biosynthesis. High-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC–MS) analyses revealed the presence and quantified the content of sanguinarine (536.87 μg/L) and chelerythrine (393.31 μg/L) in the fungal fermentation extract. Based on our analysis of the morphological and micromorphological characteristics and the ITS region of the nuclear ribosomal DNA of the alkaloid-producing endophyte, it was identified as Fusarium solani strain MC503. To the best of our knowledge, there is no existing report on Fusarium solani from Macleaya cordata or other medicinal plants that produce sanguinarine and chelerythrine simultaneously. These findings provide valuable insights into the capability of Fusarium solani to carry out isoquinoline alkaloid biosynthesis and lay the foundation for further exploration of its potential applications in pharmaceuticals.

Funder

Chinese National Natural Science Foundation of China

Graduate Research and Innovation Project of Central South University, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3