Exploring Leptospira interrogans FDAARGOS_203: Insights into AMR and Anti-Phage Defense

Author:

Petakh Pavlo12ORCID,Oksenych Valentyn3ORCID,Kamyshnyi Oleksandr2ORCID

Affiliation:

1. Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine

2. Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine

3. Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway

Abstract

Leptospira, which are known to be important disease-causing agents transmitted between animals and humans, result in significant illness and, in some cases, significant death in human populations. This purpose of this study was to examine the genomic structure of Leptospira interrogans serovar Copenhageni strain FDAARGOS_203 to identify the specific genetic factors that contribute to antimicrobial resistance (AMR) and defense against phages. The genome, consisting of two contigs totaling 4,630,574 base pairs, underwent thorough examination for protein-coding sequences, transfer RNA genes, and ribosomal RNA genes. A total of twenty-two antibiotic resistance genes that specifically target essential cellular processes such as cell wall synthesis, DNA replication, and protein synthesis have been identified. Significant among these were gidB, gdpD, and ggsA, each involved in separate aspects of antibiotic resistance. In addition, the investigation explored the defense mechanisms of bacteriophages, revealing the presence of defense islands that contain a range of anti-phage systems, including RM_Type_IV, PrrC, Borvo, CAS_Class1-Subtype-IC, and CAS_Class1-Subtype-IB. This comprehensive genomic analysis enhances our understanding of the molecular mechanisms that determine Leptospira’s ability to adapt to various environments. The identified genetic factors linked to AMR and defense against phages not only enhance our scientific comprehension, but also provide a basis for focused interventions to reduce the impact of leptospirosis.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current treatment options for leptospirosis: a mini-review;Frontiers in Microbiology;2024-04-25

2. AMR mechanisms in L. interrogans serovars: a comprehensive study;Frontiers in Cellular and Infection Microbiology;2024-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3