Analysis and Functional Prediction of Core Bacteria in the Arabidopsis Rhizosphere Microbiome under Drought Stress

Author:

Zhang Jianfeng1ORCID,Zhang Hengfei1,Luo Shouyang2,Ye Libo1,Wang Changji2,Wang Xiaonan1,Tian Chunjie2ORCID,Sun Yu2ORCID

Affiliation:

1. Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China

2. Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

Abstract

The effects of global warming, population growth, and economic development are increasing the frequency of extreme weather events, such as drought. Among abiotic stresses, drought has the greatest impact on soil biological activity and crop yields. The rhizosphere microbiota, which represents a second gene pool for plants, may help alleviate the effects of drought on crops. In order to investigate the structure and diversity of the bacterial communities on drought stress, this study analyzed the differences in the bacterial communities by high-throughput sequencing and bioinformatical analyses in the rhizosphere of Arabidopsis thaliana under normal and drought conditions. Based on analysis of α and β diversity, the results showed that drought stress had no significant effect on species diversity between groups, but affected species composition. Difference analysis of the treatments showed that the bacteria with positive responses to drought stress were Burkholderia-Caballeronia-Paraburkholderia (BCP) and Streptomyces. Drought stress reduced the complexity of the rhizosphere bacterial co-occurrence network. Streptomyces was at the core of the network in both the control and drought treatments, whereas the enrichment of BCP under drought conditions was likely due to a decrease in competitors. Functional prediction showed that the core bacteria metabolized a wide range of carbohydrates, such as pentose, glycans, and aromatic compounds. Our results provide a scientific and theoretical basis for the use of rhizosphere microbial communities to alleviate plant drought stress and the further exploration of rhizosphere microbial interactions under drought stress.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of CAS

Young Scientist Group Project of Northeast Institute of Geography and Agroecology

Science and Technology Development Project of Jilin Province of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3