Inhibitory Potential of Bifidobacterium longum FB1-1 Cell-Free Supernatant against Carbapenem-Resistant Klebsiella pneumoniae Drug Resistance Spread

Author:

Wang Jing1,Fan Dan-Cai1ORCID,Wang Rui-Shan1,Chang Yu1,Ji Xue-Meng1,Li Xin-Yang1ORCID,Zhang Yan1,Liu Jing-Min1,Wang Shuo1,Wang Jin1

Affiliation:

1. Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China

Abstract

The widespread dissemination of carbapenem-resistant Klebsiella pneumoniae (CRKP) and its drug resistance transfer poses a global public health threat. While previous studies outlined CRKP’s drug resistance mechanism, there is limited research on strategies inhibiting CRKP drug resistance spread. This study investigates the potential of Bifidobacterium longum (B. longum) FB1-1, a probiotic, in curbing the spread of drug resistance among CRKP by evaluating its cell-free supernatant (CFS) for antibacterial activity. Evaluating the inhibitory effect of FB1-1 CFS on CRKP drug resistance spread involved analyzing its impact on drug resistance and virulence gene expression; drug resistance plasmid transfer FB1-1 CFS exhibited an MIC range of 125 μL/mL against CRKP. After eight hours of co-culture, CFS achieved a 96% and 100% sterilization rate at two and four times the MIC, respectively. At sub-inhibitory concentrations (1/2× MIC), FB1-1 CFS reduced the expression of the bla_KPC gene, which is pivotal for carbapenem resistance, by up to 62.13% across different CRKP strains. Additionally, it markedly suppressed the expression of the uge gene, a key virulence factor, by up to 91%, and the fim_H gene, essential for bacterial adhesion, by up to 53.4%. Our study primarily focuses on determining the inhibitory effect of FB1-1 CFS on CRKP strains harboring the bla_KPC gene, which is a critical resistance determinant in CRKP. Furthermore, FB1-1 CFS demonstrated the ability to inhibit the transfer of drug resistance plasmids among CRKP strains, thus limiting the horizontal spread of resistance genes. This study highlights FB1-1 CFS's inhibitory effect on CRKP drug resistance spread, particularly in strains carrying the bla_KPC gene, thus offering a novel idea and theoretical foundation for developing antibacterial drugs targeting CRKP resistance.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3