Divergent Fungal Community Dynamics of Thuja sutchuenensis in Arid Environments

Author:

Zuo Youwei12ORCID,Yang Lingxiang3,Wang Qian12,Zhu Benchao3,Xia Changying12,Zhang Huan12,Li Wenqiao12,Zhang Zhe12,Deng Hongping12ORCID

Affiliation:

1. School of Life Sciences, Southwest University, Chongqing 400715, China

2. Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China

3. Center of Chongqing Dabashan National Nature Reserve Management Affairs, Chongqing 405909, China

Abstract

Thuja sutchuenensis Franch., an endangered species sparsely distributed in the mountainous and arid regions of southwest China, faces the critical challenge of adapting to these harsh conditions. Understanding the plant’s strategies for survival and the precise roles played by soil fungal communities in this adaptation remains an area of limited knowledge. Our investigation centers on the fungal communities associated with T. sutchuenensis and their interactions with soil water content. Notably, we identified unique fungal communities in the low soil moisture group, and these communities exhibited lower coverage but higher phylogenetic diversity (PD), Chao1, and Shannon indices compared to other groups. Network analysis revealed a modular structure within the fungal communities, with key hub nodes identified, particularly in the arid group. This group demonstrated higher levels of soil saprotrophs and ectomycorrhizal fungi and a reduced presence of plant pathogens. Linear discriminant analysis highlighted the significance of genera such as Russula, Myxotrichaceae, and Sebacina, emphasizing their roles in supporting the plant in arid environments. Random forest analysis indicated that soil moisture content emerged as the primary driver in determining fungal composition and diversity and contributed to the variables of several fungal genera. Collectively, this study provides valuable insights into the fungal communities associated with T. sutchuenensis, shedding light on their adaptation to extreme arid conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3