Genomic and Biochemical Characterization of Bifidobacterium pseudocatenulatum JCLA3 Isolated from Human Intestine

Author:

González-Vázquez Raquel,Zúñiga-León Eduardo,Torres-Maravilla EdgarORCID,Leyte-Lugo MarthaORCID,Mendoza-Pérez Felipe,Hernández-Delgado Natalia C.ORCID,Pérez-Pastén-Borja RicardoORCID,Azaola-Espinosa AlejandroORCID,Mayorga-Reyes Lino

Abstract

Bifidobacteria have been investigated due to their mutualistic microbe–host interaction with humans throughout their life. This work aims to make a biochemical and genomic characterization of Bifidobacterium pseudocatenulatum JCLA3. By multilocus analysis, the species of B. pseudocatenulatum JCLA3 was established as pseudocatenulatum. It contains one circular genome of 2,369,863 bp with G + C content of 56.6%, no plasmids, 1937 CDSs, 54 tRNAs, 16 rRNAs, 1 tmRNA, 1 CRISPR region, and 401 operons predicted, including a CRISPR-Cas operon; it encodes an extensive number of enzymes, which allows it to utilize different carbohydrates. The ack gene was found as part of an operon formed by xfp and pta genes. Two genes of ldh were found at different positions. Chromosomally encoded resistance to ampicillin and cephalothin, non-hemolytic activity, and moderate inhibition of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 were demonstrated by B. pseudocatenulatum JCLA3; it can survive 100% in simulated saliva, can tolerate primary and secondary glyco- or tauro-conjugated bile salts but not in a mix of bile; the strain did not survive at pH 1.5–5. The cbh gene coding to choloylglycine hydrolase was identified in its genome, which could be related to the ability to deconjugate secondary bile salts. Intact cells showed twice as much antioxidant activity than debris. B. pseudocatenulatum JCLA3 showed 49% of adhesion to Caco-2 cells. The genome and biochemical analysis help to elucidate further possible biotechnological applications of B. pseudocatenulatum JCLA3.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3