The Effects of Secondary Growth of Spartina alterniflora after Treatment on Sediment Microorganisms in the Yellow River Delta

Author:

Shang ShuaiORCID,Li Liangyu,Zhang Zaiwang,Zang Yu,Chen Jun,Wang Jun,Wu TaoORCID,Xia Jiangbao,Tang Xuexi

Abstract

As a typical invasive species, Spartina alterniflora is widely recognized as one of the primary threats to biodiversity in various habitats, including wetlands. Although the invasion by S. alterniflora has been managed in multiple ways, it may reappear after treatment. How S. alterniflora affects the soil microbial community in coastal wetlands during its regeneration process has not yet been clarified. Here, rhizosphere soil samples (RSPs) and bulk soil samples (SSPs) were collected in the S. alterniflora community and a high-throughput sequencing method was conducted to analyze the composition and diversity of soil microorganisms. Meanwhile, we also obtain the soil physicochemical properties. In the present study, there was no significant difference in the alpha diversity of both bacterial and fungal communities in the SSP and RSP groups. The PCoA (principal coordinate analysis) also showed that the microbial community structure did not differ significantly between the SSP and RSP groups. The results showed that except for pH, the total sulfur (TS) content, total nitrogen (TN) content, and electrical conductivity (EC) did not differ significantly (p > 0.05) between the SSP and RSP groups. The composition of the bacterial and fungal community in the rhizosphere of S. alterniflora was similar to that found in the surrounding soils. The top two dominant bacterial phyla were Proteobacteria and Desulfobacterota in the present study. Venn diagram results also support this view; most OTUs belong to the common OTUs of the two groups, and the proportion of unique OTUs is relatively small. The LEfSe (LDA effect size) analysis showed that Campylobacterota (at the phylum level) and Sulfurimonas (at the genus level) significantly increased in the RSP group, implying that the increased Sulfurimonas might play an essential role in the invasion by S. alterniflora during the under-water period. Overall, these results suggest that the bacterial and fungal communities were not significantly affected by the S. alterniflora invasion due to the short invasion time.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3