Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment

Author:

Cai Min,Hong YiguoORCID,Wu Jiapeng,Moore Selina SterupORCID,Vamerali TeofiloORCID,Ye Fei,Wang Yu

Abstract

Denitrification and anammox occur widely in aquatic ecosystems serving vital roles in nitrogen pollution removal. However, small waterbodies are sensitive to external influences; stormwater runoff carrying nutrients and oxygen, flows into waterbodies resulting in a disruption of geochemical and microbial processes. Nonetheless, little is known about how these short-term external inputs affect the microbial processes of nitrogen removal in small waterbodies. To investigate the effects of NO3−, NH4+, dissolved oxygen (DO) and organic C on microbial nitrogen removal in pond sediments, regulation experiments have been conducted using slurry incubation experiments and 15N tracer techniques in this study. It was demonstrated the addition of NO3− (50 to 800 μmol L−1) significantly promoted denitrification rates, as expected by Michaelis-Menten kinetics. Ponds with higher NO3− concentrations in the overlying water responded more greatly to NO3− additions. Moreover, N2O production was also promoted by such an addition of NO3−. Denitrification was significantly inhibited by the elevation of DO concentration from 0 to 2 mg L−1, after which no significant increase in inhibition was observed. Denitrification rates increased when organic C was introduced. Due to the abundant NH4+ in pond sediments, the addition demonstrated little influence on nitrogen removal. Moreover, anammox rates showed no significant changes to any amendment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3