Fe(II) Addition Drives Soil Bacterial Co-Ocurrence Patterns and Functions Mediated by Anaerobic and Chemoautotrophic Taxa

Author:

Zhang Chenyang,Liu Senlin,Hussain Sarfraz,Li Lifeng,Baiome Baiome Abdelmaguid,Xiao Shuiqing,Cao HuiORCID

Abstract

Iron is among the most abundant elements in the soil of paddy fields, and its valence state and partitioning can be transformed by flooding and drainage alternations. However, little is known about the function of soil microbes that interact with Fe(II). In this study, sandy and loamy soils originating from rice fields were treated with Fe(II) at low and high concentrations. The findings demonstrate that additional Fe(II) has various effects on the soil’s microbial community structure and metabolic pathways. We conclude that Fe(II) at high concentrations reduced bacterial abundance and diversity in two textured paddy soils, yet the abundance in loamy soils was higher than it was in sandy soil. Additionally, in environments with high Fe(II) levels, the relative abundance of both anaerobic and chemoautotrophic bacteria increased. The Fe(II) concentration was positively correlated with total reduced substances but negatively correlated with redox potential and pH. Co-occurrence networks revealed that Fe(II) significantly promoted interactions with the most anaerobic and chemoautotrophic bacteria. In addition, adding Fe(II) greatly increased the number of more complex bacterial networks, and an increase in the number of mutually beneficial taxa occurred. We found that Fe(II) promoted the methane pathway, the Calvin cycle, and nitrate reduction to small but significant extents. These pathways involve the growth and interrelation of autotrophic and anaerobic bacteria. These results suggest that changes in the bacterial community structure occur in many dry–wet alternating environments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3