Genetic Diversity and Geographical Distribution of the Red Tide Species Coscinodiscus granii Revealed Using a High-Resolution Molecular Marker

Author:

Huang Hailong,Xu Qing,Song Huiyin,Chen NanshengORCID

Abstract

Diatoms are responsible for approximately 40% of the global primary photosynthetic production and account for up to 20% of global carbon fixation. Coscinodiscus granii is a red tide forming species of the phylum Bacillariophyta that has been detected in a wide range of coastal regions, suggesting the possibility of the existence of high genetic diversity with differential adaptation. Common molecular markers including 18S rDNA, 16S rDNA, ITS, cox1, and rbcL do not provide sufficient resolution for distinguishing intra-species genetic diversity, hindering in-depth research on intra-species genetic diversity and their spatial and temporal dynamics. In this project, we aimed to develop molecular markers with high resolution and specificity for C. granii, attempting to identify different taxa of this species, which will set up a stage for subsequent functional assays. Comparative genomics analysis of the mtDNAs of C. granii strains identified a genomic region with high genomic variations, which was used to guide the development of a molecular marker with high resolution and high specificity. This new molecular marker, which was named cgmt1 (C. granii mitochondrial 1), was 376 bp in size and differentiated C. granii samples collected in coastal regions of China into three different clades. Preliminary analysis of field samples collected in various coastal regions in China revealed that C. granii clades were almost exclusively found in the Bohai Sea and the north Yellow Sea. This newly developed molecular marker cgmt1 could be used for tracking intra-species genetic diversity and biogeographic distribution of C. granii in different ecosystems.

Funder

Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3