Isolation of Thermophilic Bacteria and Investigation of Their Microplastic Degradation Ability Using Polyethylene Polymers

Author:

Özdemir Sadin,Akarsu Ceyhun,Acer Ömer,Fouillaud MireilleORCID,Dufossé LaurentORCID,Dizge Nadir

Abstract

Microplastics (MPs) pose potential public health challenges because of their widespread occurrences in all environmental compartments. While most studies have focused on the occurrence fate of microplastics in wastewater treatment systems, the biodegradation of microplastics in wastewater is generally little understood. Therefore, we used two Gram-positive and thermophilic bacteria, called strain ST3 and ST6, which were identified by morphological, biochemical, physiological, and molecular analyses, to assess the growth and biodegradation potential of two different sized (50 and 150 m) polyethylene particles. The degradation was monitored based on structural and surface morphological changes. According to 16S rRNA analyses, ST3 and ST6 were identified as Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6, respectively. The occurrence of cracks, holes, and dimensional changes was detected by scanning electron microscopy. Moreover, critical characteristic absorption band formation and modifications were determined by Fourier transform infrared spectroscopy. In addition to these, it was found that Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6 produced high level of alpha-Amylase. These results showed that thermophilic bacteria are capable of the biodegradation of microplastics and production of alpha-Amylase.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference82 articles.

1. Can proteomics contribute to biomonitoring of aquatic pollution? A critical review;Varela;Environ. Pollut.,2020

2. Microbial degradation of microplastics by enzymatic processes: A review;Othman;Environ. Chem. Lett.,2021

3. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam;Dang;Adv. Nat. Sci. Nanosci. Nanotechnol.,2018

4. UNEP (2022, October 10). United Nations Environment Programme, Beat Plastic Pollution. Available online: https://www.unep.org/.

5. Integrated Plastic Waste Management: Environmental and Improved Health Approaches;Singh;Procedia Environ. Sci.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3