Phosphorus-Solubilizing Capacity of Mortierella Species Isolated from Rhizosphere Soil of a Poplar Plantation

Author:

Sang Yue,Jin LongORCID,Zhu Rui,Yu Xing-Ye,Hu Shuang,Wang Bao-Teng,Ruan Hong-HuaORCID,Jin Feng-JieORCID,Lee Hyung-Gwan

Abstract

Phosphorus is one of the main nutrients necessary for plant growth and development. Phosphorus-dissolving microorganisms may convert insoluble phosphorus in soil into available phosphorus that plants can easily absorb and utilize. In this study, four phosphorus-solubilizing fungi (L3, L4, L5, and L12) were isolated from the rhizosphere soil of a poplar plantation in Dongtai, Jiangsu Province, China. Phylogenetic analysis based on the internal transcribed spacer (ITS) and large subunit (LSU) of the ribosomal DNA sequences showed that the ITS and 28S sequences of isolates were the most similar to those of Mortierella. Morphological observation showed that most colonies grew in concentric circles and produced spores under different culture conditions. These results and further microscopic observations showed that these isolated fungi belonged to the genus Mortierella. Pikovskaya (PKO) medium, in which tricalcium phosphate was the sole phosphorus source, was used to screen strain L4 with the best phosphorus-solubilizing effect for further study. When the carbon source was glucose, the nitrogen source was ammonium chloride, the pH was 5, and the available phosphorus content was the highest. By exploring the possible mechanism of phosphorus release by phosphorus-solubilizing fungi, it was found that strain L4 produces several organic acids, such as oxalic acid, lactic acid, acetic acid, succinic acid, tartaric acid, malic acid, and citric acid. At 24 h, the alkaline phosphatase and acid phosphatase activities reached 154.72 mol/(L·h) and 120.99 mol/(L·h), respectively.

Funder

Korea Environment Industry and Technology Institute

Korea Ministry of Environment

National Research Foundation of Korea

Natural Science Foundation of China

Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program

National Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3