Magnetron Sputtering of Transition Metals as an Alternative Production Means for Antibacterial Surfaces

Author:

Kaltschmidt Bernhard Peter,Asghari Ehsan,Kiel AnnikaORCID,Cremer JulianORCID,Anselmetti Dario,Kaltschmidt Christian,Kaltschmidt Barbara,Hütten AndreasORCID

Abstract

In the light of the SARS-CoV-2 pandemic and growing numbers of bacteria with resistance to antibiotics, the development of antimicrobial coatings is rising worldwide. Inorganic coatings are attractive because of low environmental leakage and wear resistance. Examples for coatings are hot metal dipping or physical vapor deposition of nanometer coatings. Here, magnetron sputtering of various transition metals, such as gold, ruthenium and tantalum, was investigated. Metal films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX). We investigated the growth of Pseudomonas aeruginosa isolated from household appliances on different sputter-coated metal surfaces. The fine-grained nanometric structure of these metal coatings was between 14 nm (tantalum) and 26 nm (gold) and the roughness was in a range of 164 pm (ruthenium) to 246 pm (gold). Antibacterial efficacy of metal surfaces followed the order: gold > tantalum > ruthenium. Interestingly, gold had the strongest inhibitory effect on bacterial growth, as analyzed by LIVE/DEAD and CFU assay. High-magnification SEM images showed dead bacteria characterized by shrinkage induced by metal coatings. We conclude that sputtering might be a new application for the development of antimicrobial surfaces on household appliances and or surgical instruments.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference39 articles.

1. Antimicrobial Coatings Market Worth $6.4 Billion by 2026—Report by MarketsandMarketsTM https://www.marketsandmarkets.com/PressReleases/antimicrobial-coatings.asp

2. Adhesion and Wear Behaviour of NCD Coatings on Si3N4 by Micro-Abrasion Tests

3. TiB2 Nanostructured Coating for GFRP Injection Moulds

4. Vapor Deposition;John,1966

5. The Foundations of Vacuum Coating Technology;Mattox,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3