Metagenomics Reveal Microbial Effects of Lotus Root–Fish Co-Culture on Nitrogen Cycling in Aquaculture Pond Sediments

Author:

Yang Zhen,Yao Yanhong,Sun Meng,Li Gu,Zhu Jianqiang

Abstract

Feed input leads to a large amount of nitrogen-containing sediment accumulating in the substrate in the pond culture process, threatening the safety of aquaculture production. Planting lotus roots (Nelumbo nucifera Gaertn.) in ponds can accelerate the removal of bottom nitrogen, while the role of nitrogen cycle-related microorganisms in the removal is still unclear. In this study, eight yellow catfish (Pelteobagrus fulvidraco) culture ponds with the same basic situation were divided into fishponds with planted lotus roots and ponds with only fish farming. Sediment samples were taken from the fishponds with planted lotus roots and the ponds with only fish farming before and after fish farming, marked as FPB, FPA, FOB, and FOA, respectively, and subjected to physicochemical and metagenomic sequencing analyses. The results show that the contents of NH4+, NO2−, TN, TP, and OM were significantly lower (p < 0.05) in FPA than in FOA. The abundance of metabolic pathways for inorganic nitrogen transformation and ammonia assimilation increased considerably after culture compared to the sediments before culture. A total of eight ammonia production pathways and two ammonia utilization pathways were annotated in the sediments of the experimental ponds, with a very high abundance of ammonia assimilation. Acinetobacter and Pseudomonas (34.67%, 18.02%) were the dominant bacteria in the pond sediments before culture, which changed to Thiobacillus (12.16%) after culture. The FPA had significantly higher relative abundances of Thiobacillus denitrificans and Sulfuricella denitrificans, and the FOA had significantly a higher abundance of Microcystis aeruginosa compared to other samples. The massive growth of Microcystis aeruginosa provided two new inorganic nitrogen metabolic pathways and one organic nitrogen metabolic pathway for FOA. The relative abundances of these three microorganisms were negatively correlated with NH4+ content (p < 0.01) and significantly positively correlated with AP, OM content, and pH value. Compared with ponds with only fish farming, lotus root–fish co-culture can significantly reduce the nitrogen content in sediment, increase the abundance of denitrifying bacteria, and inhibit algae growth. Still, it has little effect on the abundance of nitrogen cycle-related enzymes and genes. In summary, it is shown that, although lotus roots promote the growth of denitrifying microorganisms in the sediment, nitrogen removal relies mainly on nutrient uptake by lotus roots.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3