Enhancing Saccharomyces cerevisiae Taxane Biosynthesis and Overcoming Nutritional Stress-Induced Pseudohyphal Growth

Author:

Walls Laura Ellen,Martinez José L.ORCID,Rios-Solis LeonardoORCID

Abstract

The recent technological advancements in synthetic biology have demonstrated the extensive potential socio-economic benefits at laboratory scale. However, translations of such technologies to industrial scale fermentations remains a major bottleneck. The existence and lack of understanding of the major discrepancies in cultivation conditions between scales often leads to the selection of suboptimal bioprocessing conditions, crippling industrial scale productivity. In this study, strategic design of experiments approaches were coupled with state-of-the-art bioreactor tools to characterize and overcome nutritional stress for the enhanced production of precursors to the blockbuster chemotherapy drug, Taxol, in S. cerevisiae cell factories. The batch-to-batch variation in yeast extract composition was found to trigger nutritional stress at a mini-bioreactor scale, resulting in profound changes in cellular morphology and the inhibition of taxane production. The cells shifted from the typical budding morphology into striking pseudohyphal cells. Doubling initial yeast extract and peptone concentrations (2×YP) delayed filamentous growth, and taxane accumulation improved to 108 mg/L. Through coupling a statistical definitive screening design approach with the state-of-the-art high-throughput micro-bioreactors, the total taxane titers were improved a further two-fold, compared to the 2×YP culture, to 229 mg/L. Filamentous growth was absent in nutrient-limited microscale cultures, underlining the complex and multifactorial nature of yeast stress responses. Validation of the optimal microscale conditions in 1L bioreactors successfully alleviated nutritional stress and improved the titers to 387 mg/L. Production of the key Taxol precursor, T5αAc, was improved two-fold to 22 mg/L compared to previous maxima. The present study highlights the importance of following an interdisciplinary approach combining synthetic biology and bioprocessing technologies for effective process optimization and scale-up.

Funder

Engineering and Physical Sciences Research Council

Royal Society

British Council

Novo Nordisk

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3