An Experimental Murine Model to Assess Biofilm Persistence on Commercial Breast Implant Surfaces

Author:

Carmona-Torre FranciscoORCID,Fernández-Ciriza Leire,Berniz Carlos,Gomez-Martinez de Lecea CristinaORCID,Ramos Ana,Hontanilla BernardoORCID,del Pozo Jose L.ORCID

Abstract

Capsular contracture is the most frequently associated complication following breast implant placement. Biofilm formation on the surface of such implants could significantly influence the pathogenesis of this complication. The objective of this study was to design an experimental model of breast implant infection that allowed us to compare the in vivo S. epidermidis ability to form and perpetuate biofilms on commonly used types of breast implants (i.e., macrotexturized, microtexturized, and smooth). A biofilm forming S. epidermidis strain (ATCC 35984) was used for all experiments. Three different implant surface types were tested: McGhan BIOCELL® (i.e., macrotexturized); Mentor Siltex® (i.e., microtexturized); and Allergan Natrelle Smooth® (i.e., smooth). Two different infection scenarios were simulated. The ability to form biofilm on capsules and implants over time was evaluated by quantitative post-sonication culture of implants and capsules biopsies. This experimental model allows the generation of a subclinical staphylococcal infection associated with a breast implant placed in the subcutaneous tissue of Wistar rats. The probability of generating an infection was different according to the type of implant studied and to the time from implantation to implant removal. Infection was achieved in 88.9% of macrotextured implants (i.e., McGhan), 37.0% of microtexturized implants (i.e., Mentor), and 18.5% of smooth implants (i.e., Allergan Smooth) in the short-term (p < 0.001). Infection was achieved in 47.2% of macrotextured implants, 2.8% of microtexturized implants, and 2.8% of smooth implants (i.e., Allergan Smooth) in the long-term (p < 0.001). There was a clear positive correlation between biofilm formation on any type of implant and capsule colonization/infection. Uniformly, the capsules formed around the macro- or microtexturized implants were consistently macroscopically thicker than those formed around the smooth implants regardless of the time at which they were removed (i.e., 1–2 weeks or 3–5 weeks). We have shown that there is a difference in the ability of S epidermidis to develop in vivo biofilms on macrotextured, microtextured, and smooth implants. Smooth implants clearly thwart bacterial adherence and, consequently, biofilm formation and persistence are hindered.

Funder

Spanish Instituto de Salud Carlos III–Subdirección General de Evaluación y Fomento de la investigación–FEDER

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3