StcU-2 Gene Mutation via CRISPR/Cas9 Leads to Misregulation of Spore-Cyst Formation in Ascosphaera apis

Author:

Aynalem TessemaORCID,Meng LifengORCID,Getachew Awraris,Wu Jiangli,Yu Huimin,Tan Jing,Li NannanORCID,Xu Shufa

Abstract

Ascosphaera apis is the causative agent of honey bee chalkbrood disease, and spores are the only known source of infections. Interference with sporulation is therefore a promising way to manage A. apis. The versicolorin reductase gene (StcU-2) is a ketoreductase protein related to sporulation and melanin biosynthesis. To study the StcU-2 gene in ascospore production of A. apis, CRISPR/Cas9 was used, and eight hygromycin B antibiotic-resistant transformants incorporating enhanced green fluorescent protein (EGFP) were made and analyzed. PCR amplification, gel electrophoresis, and sequence analysis were used for target gene editing analysis and verification. The CRISPR/Cas9 editing successfully knocked out the StcU-2 gene in A. apis. StcU-2 mutants had shown albino and non-functional spore-cyst development and lost effective sporulation. In conclusion, editing of StcU-2 gene has shown direct relation with sporulation and melanin biosynthesis of A. apis; this effective sporulation reduction would reduce the spread and pathogenicity of A. apis to managed honey bee. To the best of our knowledge, this is the first time CRISPR/Cas9-mediated gene editing has been efficiently performed in A. apis, a fungal honey bee brood pathogen, which offers a comprehensive set of procedural references that contributes to A. apis gene function studies and consequent control of chalkbrood disease.

Funder

Agricultural Science and Technology Innovation Program

Modern Agro-industry Technology Research System

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3