Response of Soil Bacterial Diversity, Predicted Functions and Co-Occurrence Patterns to Nanoceria and Ionic Cerium Exposure

Author:

Zhang JieORCID,Meng Hui-Sheng,Shang Yan-Meng,Lead Jamie R.,Guo Zhang-Zhen,Hong Jian-Ping

Abstract

Release of nanoceria (nCeO2) into the environment has caused much concern about its potential toxicity, which still remains poorly understood for soil microorganisms. In this study, nanoceria and cerium (III) nitrate at different doses (10, 100 and 500 mg/kg) were applied to bok choy (Brassica rapa subsp. chinensis), grown in potting soil, to investigate the responses of soil bacterial communities to nanoceria (NC) and ionic cerium (IC) applications. The results showed that bacterial richness was slightly increased in all cerium treatments relative to the negative control without cerium amendment (CK), but a significant increase was only found in IC500. The patterns of bacterial community composition, predicted functions and phenotypes of all NC treatments were significantly differentiated from IC and CK treatments, which was correlated with the contents of cerium, available potassium and phosphorus in soil. The co-occurrence network of bacterial taxa was more complex after exposure to ionic cerium than to nanoceria. The keystone taxa of the two networks were entirely different. Predicted functions analysis found that anaerobic and Gram-negative bacteria were enriched under nanoceria exposure. Our study implies that Proteobacteria and nitrifying bacteria were significantly enriched after exposure to nanoceria and could be potential biomarkers of soil environmental perturbation from nanoceria exposure.

Funder

National Natural Science Foundation of China

Incentive Research Foundation of Shanxi Province for Recruited Doctoral Talents

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3