On the Efficacy of H2O2 or S2O82− at Promoting the Inactivation of a Consortium of Cyanobacteria and Bacteria in Algae-Laden Water

Author:

Moreno-Andrés JavierORCID,Rivas-Zaballos Ignacio,Acevedo-Merino Asunción,Nebot Enrique

Abstract

Harmful algal blooms in coastal areas can significantly impact a water source. Microorganisms such as cyanobacteria and associated pathogenic bacteria may endanger an ecosystem and human health by causing significant eco-hazards. This study assesses the efficacy of two different reagents, H2O2 and S2O82−, as (pre-)treatment options for algae-laden waters. Anabaena sp. and Vibrio alginolyticus have been selected as target microorganisms. With the objective of activating H2O2 or S2O82−, additional experiments have been performed with the presence of small amounts of iron (18 µmol/L). For the cyanobacterial case, H2O2-based processes demonstrate greater efficiency over that of S2O82−, as Anabaena sp. is particularly affected by H2O2, for which >90% of growth inhibition has been achieved with 0.088 mmol/L of H2O2 (at 72 h of exposure). The response of Anabaena sp. as a co-culture with V. alginolyticus implies the use of major H2O2 amounts for its inactivation (0.29 mmol/L of H2O2), while the effects of H2O2/Fe(II) suggests an improvement of ~60% compared to single H2O2. These H2O2 doses are not sufficient for preventing the regrowth of V. alginolyticus after 24 h. The effects of S2O82− (+ Fe(II)) are moderate, reaching maximum inhibition growth of ~50% for Anabaena sp. at seven days of exposure. Nevertheless, doses of 3 mmol/L of S2O82− can prevent the regrowth of V. alginolyticus. These findings have implications for the mitigation of HABs but also for the associated bacteria that threaten many coastal ecosystems.

Funder

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3