Environmental Adaptability and Organic Pollutant Degradation Capacity of a Novel Rhodococcus Species Derived from Soil in the Uninhabited Area of the Qinghai-Tibet Plateau

Author:

Huang Jiao,Ai Guomin,Liu NingORCID,Huang YingORCID

Abstract

The Qinghai-Tibet Plateau (QTP) is known for extreme natural environments and, surprisingly, has been reported to contain widespread organic pollutants. Rhodococcus can survive a variety of extreme environments and degrade many organic contaminants. Here, we isolated a Rhodococcus strain (FXJ9.536 = CGMCC 4.7853) from a soil sample collected in the QTP. Phylogenomic analysis indicated that the strain represents a novel Rhodococcus species, for which the name Rhodococcus tibetensis sp. nov. is proposed. Interestingly, R. tibetensis FXJ9.536 maintained a fast growth rate and degraded 6.2% of p-nitrophenol (4-NP) and 50.0% of malathion even at 10 °C. It could degrade 53.6% of 4-NP and 99.9% of malathion at a moderate temperature. The genome of R. tibetensis FXJ9.536 contains 4-hydroxyphenylacetate 3-monoxygenase and carboxylesterase genes, which are likely associated with the degradation of 4-NP and malathion, respectively. Further genomic analysis revealed that the strain might employ multiple strategies to adapt to the harsh QTP environment. These include synthesizing cold shock proteins, compatible solutes, secondary metabolites, and storage compounds, utilizing inorganic compounds as energy and nutrition sources, as well as degrading a range of organic pollutants. Overall, our study reveals the potential of a QTP-derived new actinobacterial species for environmental adaptation and remediation in cold regions.

Funder

Central Aisan Drug Discovery and Development Center of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Origin and Management of Inorganic and Organic Contaminants;Management and Mitigation of Emerging Pollutants;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3