Parameterising Translational Feedback Models of Autoregulatory RNA-Binding Proteins in Saccharomyces cerevisiae

Author:

Clarke-Whittet Michael,Rocco Andrea,Gerber André P.ORCID

Abstract

Post-transcriptional gene regulation is driven by RNA-binding proteins (RBPs). Recent global approaches suggest widespread autoregulation of RBPs through binding to their own mRNA; however, little is known about the regulatory impact and quantitative models remain elusive. By integration of several independent kinetic parameters and abundance data, we modelled autoregulatory feedback loops for six canonical and non-canonical RBPs from the yeast Saccharomyces cerevisiae, namely Hrb1p, Hek2/Khd1p, Ski2p, Npl3p, Pfk2p, and Map1p. By numerically solving ordinary differential equations, we compared non-feedback models with models that considered the RPBs as post-transcriptional activators/repressors of their own expression. While our results highlight a substantial gap between predicted protein output and experimentally determined protein abundances applying a no-feedback model, addition of positive feedback loops are surprisingly versatile and can improve predictions towards experimentally determined protein levels, whereas negative feedbacks are particularly sensitive to cooperativity. Our data suggests that introduction of feedback loops supported by real data can improve models of post-transcriptional gene expression.

Funder

Leverhulme Trust

Royal Society

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3