Effects of Below-Ground Microbial Biostimulant Trichoderma harzianum on Diseases, Insect Community, and Plant Performance in Cucurbita pepo L. under Open Field Conditions

Author:

Forlano Pierluigi,Mang Stefania MirelaORCID,Caccavo VittoriaORCID,Fanti Paolo,Camele IppolitoORCID,Battaglia DonatellaORCID,Trotta VincenzoORCID

Abstract

Agrochemicals are generally used in agriculture to maximize yields and product quality, but their overuse can cause environmental pollution and human health problems. To reduce the off-farm input of chemicals, numerous biostimulant products based on beneficial symbiont plant fungi are receiving a great deal of attention. The evolution of plant diseases and the performance of insects are influenced by plant chemical defences, both of which are, in turn, influenced by below-ground symbionts. Direct and indirect plant defences mediated by belowground symbionts against plant diseases and insect herbivores were demonstrated in greenhouses experiments. However, little attention has been paid to the use of Trichoderma under open field conditions, and no data are available for zucchini (Cucurbita pepo L.) plants in the field. To determine the effects of a commercial Trichoderma harzianum strain T22 on plant viruses, powdery mildew, the arthropod community, and on the agronomic performance associated with zucchini plants, an experiment was conducted in 2022 under open field conditions in South Italy. Our results indicate that T. harzianum T22 makes zucchini plants more attractive to aphids and to Hymenoptera parasitoid but failed to control zucchini pathogens. The complex plant–disease–arthropod–microorganism interactions that occurred in the field during the entire plant cycle are discussed to enrich our current information on the possibilities of using these microorganisms as a green alternative in agriculture.

Funder

PON “Research and Innovation”

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference82 articles.

1. Solutions for a Cultivated Planet;Nature,2011

2. Structure and Function of the Soil Microbial Community in a Long-Term Fertilizer Experiment;Soil Biol. Biochem.,2003

3. Agrochemicals as a Potential Cause of Ground Water Pollution: A Review;Int. J. Chem. Stud.,2018

4. Editorial Overview: Pests and Resistance: Resistance to Pesticides in Arthropod Crop Pests and Disease Vectors: Mechanisms, Models and Tools;Curr. Opin. Insect Sci.,2018

5. The Evolutionary Origins of Pesticide Resistance;Biol. Rev.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3