Abstract
Polyethylene glycol (PEG) is one of the most commonly used bowel cleansing methods. Although the safety of PEG for bowel cleansing has been proven, its impact on intestinal microbiota has not been clearly explained, especially in terms of the dynamic changes in intestinal microbiota after PEG bowel cleansing, and there are no consistent results. In this study, stool samples were collected from 12 participants at six time points before and after bowel cleansing. We obtained data on the microbiota of these samples using 16S rRNA gene sequencing and analysis. The data revealed that the structure and composition of the microbiota changed greatly approximately 7 d after intestinal cleansing. The analysis of the dynamic changes in the microbiota showed that the change was most significant at day 3, but the internal structure of the microbiota was similar to that before bowel cleansing. A comparison of the most significantly changed microbiota at different time points before and after bowel cleansing revealed four bacteria: Bacteroides, Roseburia, Eubacterium, and Bifidobacterium. We also established a humanized mouse model to simulate human bowel cleansing using PEG. The results showed that the mouse model achieved similar effects to human bowel cleansing, but its recovery speed was one stage earlier than that of humans. These findings suggest that the intestinal microbiota after bowel cleansing initially underwent a short-term change and then actively returned to its initial status. The results on key bacteria and establishment of mouse models can provide a reference for subsequent research on bowel cleansing.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
key Talents Project of “Strengthening Health through Science and Education” of Wuxi Health and Family Planning Commission
Top Talents Project of “Six-one Project” for High-level Health Talents in Jiangsu Province
Subject
Virology,Microbiology (medical),Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献