Three Methods Assessing the Association of the Endophytic Entomopathogenic Fungus Metarhizium robertsii with Non-Grafted Grapevine Vitis vinifera

Author:

Ponchon Mathilde,Reineke Annette,Massot Marie,Bidochka Michael J.,Thiéry Denis,Papura Daciana

Abstract

Characterizing the association of endophytic insect pathogenic fungi (EIPF) with plants is an important step in order to understand their ecology before using them in biological control programs. Since several methods are available, it is challenging to identify the most appropriate for such investigations. Here, we used two strains of Metarhizium robertsii: EF3.5(2) native to the French vineyard environment and ARSEF-2575-GFP a laboratory strain expressing a green fluorescent protein, to compare their potential of association with non-grafted grapevine Vitis vinifera. Three methods were used to evaluate the kinetics of rhizosphere and grapevine endospheric colonization: (i) Droplet Digital (ddPCR), a sensitive molecular method of M. robertsii DNA quantification in different plant parts, (ii) culture-based method to detect the live fungal propagules from plant tissues that grew on the medium, (iii) confocal imaging to observe roots segments. Both strains showed evidence of establishment in the rhizosphere of grapevines according to the culture-based and ddPCR methods, with a significantly higher establishment of strain EF3.5(2) (40% positive plants and quantified median of exp(4.61) c/μL) compared to strain ARSEF-2575-GFP (13% positive plants and quantified median of exp(2.25) c/μL) at 96–98 days post-inoculation. A low incidence of association of both strains in the grapevine root endosphere was found with no significant differences between strains and evaluation methods (15% positive plants inoculated with strain EF3.5(2) and 5% with strain ARSEF-2575-GFP according to culture-based method). ddPCR should be used more extensively to investigate the association between plants and EIPF but always accompanied with at least one method such as culture-based method or confocal microscopy.

Funder

Bordeaux-Adelaide-Geisenheim (BAG) international project alliance

French-German Doctoral College

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3