Maize Growth Promotion by Inoculation with an Engineered Ammonium-Excreting Strain of Nitrogen-Fixing Pseudomonasstutzeri

Author:

Jiang Shanshan,Li Jiang,Wang Qingyu,Yin Changyan,Zhan Yuhua,Yan YongliangORCID,Lin Min,Ke Xiubin

Abstract

Diazotroph mutants designed using metabolic engineering to excrete surplus ammonium were used to enhance nitrogen fixation and plant growth, as the levels of nitrogen fixation attained with diazotrophs are insufficient for the plant’s needs. In this study, wild-type (A1501) and engineered ammonium-excreting (1568/pVA3) strains of nitrogen-fixing Pseudomonas stutzeri strains were tested in vitro based on plant growth-promoting traits, such as phosphate solubilization ability, indole acetic acid (IAA) production and nitrogenase activities, as well as ammonium excretion as affected by mannitol-mediated osmotic stress. The maize plant growth-promoting effect of the A1501 and 1568/pVA3 strains was evaluated in pots and in the field, and the 15N-dilution technique was employed to assess the proportion of plant nitrogen derived from nitrogen fixation. The results demonstrate that the 1568/pVA3 strain displayed higher IAA production and nitrogenase activity than A1501 and released significant quantities of ammonium. After 50 days, in all of the conditions assayed, maize inoculated with 1568/pVA3 accumulated more plant biomass (3.3% on average) and fixed N (39.4% on average) than plants inoculated with A1501. In the field experiment, the grain yield of maize was enhanced by 5.6% or 5.9% due to the inoculation of seeds with 1568/pVA3 in the absence or presence of exogenous N fertilizer, respectively. Therefore, the engineered P. stutzeri strain tested in the greenhouse and field was shown to perform better than the wild-type strain with respect to maize growth parameters and biologically fixed nitrogen.

Funder

Key Research and Development Projects

National Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Agricultural Science and Technology Innovation Program of CAAS

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3