Inability to Catabolize Rhamnose by Sinorhizobium meliloti Rm1021 Affects Competition for Nodule Occupancy

Author:

Rivers Damien M. R.,Kim Derek D.,Oresnik Ivan J.

Abstract

Rhizobium leguminosarum strains unable to grow on rhamnose as a sole carbon source are less competitive for nodule occupancy. To determine if the ability to use rhamnose as a sole carbon source affects competition for nodule occupancy in Sinorhizobium meliloti, Tn5 mutants unable to use rhamnose as a sole carbon source were isolated. S. meliloti mutations affecting rhamnose utilization were found in two operons syntenous to those of R. leguminosarum. Although the S. meliloti Tn5 mutants were complemented using an R. leguminosarum cosmid that contains the entire wild-type rhamnose catabolic locus, complementation did not occur if the cosmids carried Tn5 insertions within the locus. Through a series of heterologous complementation experiments, enzyme assays, gene fusion, and transport experiments, we show that the S. meliloti regulator, RhaR, is dominant to its R. leguminosarum counterpart. In addition, the data support the hypothesis that the R. leguminosarum kinase is capable of directly phosphorylating rhamnose and rhamnulose, whereas the S. meliloti kinase does not possess rhamnose kinase activity. In nodule competition assays, S. meliloti mutants incapable of rhamnose transport were shown to be less competitive than the wild-type and had a decreased ability to bind plant roots in the presence of rhamnose. The data suggests that rhamnose catabolism is a general determinant in competition for nodule occupancy that spans across rhizobial species.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3