Diversity of Microbial Communities of Pinus sylvestris var. mongolica at Spatial Scale

Author:

Wang Dan-Dan,Zhao Wen,Reyila Mumin,Huang Kai-Chuan,Liu Shun,Cui Bao-Kai

Abstract

Soil microorganisms play an indispensable role in the forest ecosystem. It is necessary to study the soil microorganisms in Pinus sylvestris var. mongolica, which is one of the afforestation species widely planted in the northern sandy region of China. We collected soil samples of P. sylvestris at large spatial scales and analyzed bacterial and fungal community composition differences using high-throughput sequencing techniques. The results showed that: (1) the richness index of different sandy lands was significantly different. The α-diversity of bacteria was the highest in Mu Us Sandy Land, and the α-diversity of fungi was the highest in Horqin Sandy Land. (2) The dominant phyla of bacteria were Actinobacteria, Proteobacteria, Chloroflexi and Acidobacteria, while the dominant phyla of fungi were Ascomycota and Basidiomycota. The relative abundance of dominant phyla was different. (3) Temperature and precipitation were the main driving factors of bacterial and fungal community change at large spatial scale. In addition, bacteria were also affected by total nitrogen, soil organic carbon and pH content; fungal community was affected by pH. The microorganisms showed obvious differences in geographical distribution, which could provide ideas for promoting sustainable management of P. sylvestris stand.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3