Microbial Biofilms: Structural Plasticity and Emerging Properties

Author:

Bridier ArnaudORCID,Briandet RomainORCID

Abstract

Microbial biofilms are found everywhere and can be either beneficial or detrimental, as they are involved in crucial ecological processes and in severe chronic infections. The functional properties of biofilms are closely related to their three-dimensional (3D) structure, and the ability of microorganisms to collectively and dynamically shape the community spatial organization in response to stresses in such biological edifices. A large number of works have shown a relationship between the modulation of the spatial organization and ecological interactions in biofilms in response to environmental fluctuations, as well as their emerging properties essential for nutrient cycling and bioremediation processes in natural environments. On the contrary, numerous studies have emphasized the role of structural rearrangements and matrix production in the increased tolerance of bacteria in biofilms toward antimicrobials. In these last few years, the development of innovative approaches, relying on recent technological advances in imaging, computing capacity, and other analytical tools, has led to the production of original data that have improved our understanding of this close relationship. However, it has also highlighted the need to delve deeper into the study of cell behavior in such complex communities during 3D structure development and maturation— from a single-cell to a multicellular scale— to better control or harness positive and negative impacts of biofilms. For this Special Issue, the interplay between biofilm emerging properties and their 3D spatial organization considering different models, from single bacteria to complex environmental communities, and various environments, from natural ecosystems to industrial and medical settings are addressed.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3